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Abstract

We point out that the nonlinear Schrödinger lattice with a saturable nonlinearity
also admits staggered periodic as well as localized pulse-like solutions. Further,
the same model also admits solutions with a short period. We examine the
stability of these solutions and find that the staggered as well as the short-
period solutions are stable in most cases. We also show that the effective
Peierls–Nabarro barrier for the pulse-like soliton solutions is zero.

PACS numbers: 05.45.Ra, 63.20.Ry, 63.20.Pw

The saturable discrete nonlinear Schrödinger (DNLS) equation is increasingly finding
applications in various physical situations. Most notably it serves as a model for optical
pulse propagation in optically modulated photorefractive media [1], and in this context the
pulse dynamics it describes have been intensely studied [2–4]. In addition to its important
role for such applications the saturable DNLS equation is also of interest from a purely
nonlinear science viewpoint [5–7]. This interest arises because the saturable DNLS equation
has been demonstrated [8] to admit onsite and intersite soliton solutions, which have the same
energy. This is in contrast to the standard cubic nonlinear Schrödinger lattice where the onsite
solution always has lower energy than the intersite solution. This phenomenon has often
been characterized in terms of a so-called Peierls–Nabarro (PN) barrier, which is the energy
difference between these two distinct solutions. Thus the particular feature of the saturable
DNLS equation is that it allows the PN barrier to change sign and specifically vanish for
certain solutions. The vanishing of the PN barrier has been associated with the ability of these
solutions to translate undisturbed through the lattice, which is impossible in the cubic DNLS
equation. Here we derive analytical solutions to the saturable DNLS equation and demonstrate
that the localized soliton solutions have a zero PN barrier.
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Recently, we obtained [9] two different temporally and spatially periodic solutions to the
saturable equation4

iψ̇n + (ψn+1 + ψn−1 − 2ψn) +
ν|ψn|2

1 + μ|ψn|2 ψn = 0, (1)

where ψn is a complex valued ‘wavefunction’ at site n, while ν and μ are real parameters. In
particular, the first solution is

ψ I
n = 1√

μ

sn(β,m)

cn(β,m)
dn([n + c]β,m) exp(−i[ωt + δ]), (2)

where the modulus of the elliptic functions m must be chosen such that

2 − ω = ν

μ
= 2dn(β,m)

cn2(β,m)
, β = 2K(m)

Np

, (3)

and c and δ are arbitrary constants. We only need to consider c between 0 and 1
2 (half the

lattice spacing). Here K(m) denotes the complete elliptic integral of the first kind [10]. The
second solution is

ψ II
n =

√
m

μ

sn(β,m)

dn(β,m)
cn([n + c]β,m) exp(−i[ωt + δ]), (4)

where the modulus m is now determined such that

2 − ω = ν

μ
= 2cn(β,m)

dn2(β,m)
, β = 4K(m)

Np

. (5)

The integer Np denotes the spatial period of the solutions. In the limit Np → ∞ (m → 1),
both the solutions ψ I

n and ψ II
n reduce to the same localized solution

ψ III
n = 1√

μ

sinh(β)

cosh([n + c]β)
e−i[ωt+δ], (Np → ∞), (6)

where β is now given by

2 − ω = ν

μ
= 2 cosh β. (7)

In [9], we also developed the stability analysis and examined the linear stability of these
solutions to show that the solutions are linearly stable in most cases.

The purpose of this paper is to point out that the same model (1) also admits the
corresponding staggered solutions. In particular, using the identities for the Jacobi elliptic
functions [11], it is easily shown that the model admits the following solutions:

ψ IS
n = (−1)n

1√
μ

sn(β,m)

cn(β,m)
dn([n + c]β,m) exp(−i[ωt + δ]), (8)

where the modulus m must be chosen such that

ω − 2 = − ν

μ
= 2dn(β,m)

cn2(β,m)
, β = 2K(m)

Np

, (9)

ψ IIS
n = (−1)n

√
m

μ

sn(β,m)

dn(β,m)
cn([n + c]β,m) exp(−i[ωt + δ]), (10)

4 Note that rewriting ν|ψn|2
1+μ|ψn|2 ψn = ν

μ

(
1 − 1

1+μ|ψn|2
)
ψn and the notation change ν

μ
→ −ν followed by the gauge

transformation φn → φn exp(−νt) render the equation in a form that is used more often [7].
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Figure 1. Illustration of the exact solutions of the two types. The parameters are: ν = −1, μ = 0.4,

ω = 4.5 and c = t = δ = 0. Np = 10 for ψ IS
n and 20 for ψ IIS

n . The dashed curves represent
the solutions given by equations (8) and (10) as if n is a continuous variable. Lines are guides to
the eye.

where the modulus m is now determined such that

ω − 2 = − ν

μ
= 2cn(β,m)

dn2(β,m)
, β = 4K(m)

Np

. (11)

In the limit Np → ∞ (m → 1), both the solutions ψ IS
n and ψ IIS

n reduce to the same localized
staggered solution:

ψ IIIS
n = (−1)n

1√
μ

sinh(β)

cosh([n + c]β)
e−i[ωt+δ], (Np → ∞), (12)

where β is now given by

ω − 2 = − ν

μ
= 2 cosh β. (13)

As an illustration we have plotted the exact solutions of the type IS and IIS in figure 1. Here
the period Np has to be even. We have shown two periods for type IS and only one for
type IIS.

There are, as expressed by equations (9), (11) and (13), stringent conditions on the
parameters μ and ν for which these exact solutions exist. For example, while the nonstaggered
solutions are valid only for ν > 0 and hence ω < 2, the staggered solutions are valid only if
ν < 0 and hence ω > 2. In the case IS, the limitation is

0 (m = 1) < −2μ

ν
< cos2

(
π

Np

)
(m = 0), (14)

while in the case IIS the limitation is

0 (m = 1) < −2μ

ν
<

1

cos
(

2π
Np

) (m = 0). (15)

Similarly, the solution ψ IIIS
n exists only when − 2μ

ν
is close to zero (m = 1).

We have also examined the linear stability of these solutions and find that the solutions
are linearly stable in most cases. A single period (N = Np, where N is the lattice size) is
always stable for both the solutions IS and IIS. A type IIS solution with more than one period
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(N = jNp, where j is an integer larger than 1) is also stable, while a type IS solution with
more than one period is always unstable. Thus, the first example in figure 1 is in fact unstable.

For the solution IIIS, expressions for both the power and Hamiltonian are identical to
those for the solution III and are given by equations (13) and (14) of [9]. Hence the PN barrier
for the solutions III and IIIS is the same. We would like to point out here that the calculation
of PN barrier in I was not quite correct. In particular, since both power P and the Hamiltonian
H are constants of motion, one must compute the energy difference between the solutions
when c = 0 and c = 1/2 in such a way that the power P is same in both the cases. On using
the expressions for P and H as given by equations (13) and (14) of [9], we find that H for the
solution III as well as IIIS is given by

H = −4 sinh(β)

μ
+

2βν

μ2
+ 2

(
1 − ν

2μ

)
P. (16)

Note that H is in fact independent of c, i.e. in contrast to our claim in [9], the PN barrier is in
fact zero for our solution III (and hence also for IIIS).

Before completing this paper, we would like to mention that the model (1) also admits a
few short-period solutions.

Using the ansatz,

ψn(t) = φn e−i(ωt+δ), (17)

in equation (1), it is easily checked that the only possible short-period solutions to
equation (1) are:

(i) Period 1 solution φn = (. . . , a, a, . . .) provided

ω = − νa2

1 + μa2
. (18)

(ii) Period 2 solution φn = (. . . , a,−a, . . .) provided

ω = 4 − νa2

1 + μa2
. (19)

(iii) Period 3 solution φn = (. . . , a, 0,−a, . . .) provided

ω = 3 − νa2

1 + μa2
. (20)

(iv) Period 4 solutions φn = (. . . , a, 0,−a, 0, . . .) and (. . . , a, a, −a,−a, . . .) provided

ω = 2 − νa2

1 + μa2
. (21)

(v) Period 6 solution φn = (. . . , a, a, 0,−a,−a, 0, . . .) provided

ω = 1 − νa2

1 + μa2
. (22)

Applying the stability analysis developed in [9] we have examined the stability of these short-
period solutions and find that for a small nonlinearity (|ν| < 2μ) they are all stable. The
period 4 solution (. . . , a, a,−a,−a, . . .) is always stable while all the other short-period
solutions possess regions of instabilities at larger nonlinearity. For these low-period solutions
the stability matrices given by equations (20) and (21) of [9] are simple, and it is, for example,
easy to see that the lowest non-zero eigenvalue, λ1(a, ν), of the stability problem for the period
1 solutions is given by (μ = 1)

λ1(a, ν) = a4 +
(
2 − 2

3ν
)
a2 + 1. (23)
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Figure 2. Regions of stability for the short-period solutions to equation (1) for μ = 1. Period 1:
thick full curve, period 2: dashed-dotted curve, period 3: long-dashed curve, period 4: thin full
curve and period 6: long-dashed curve. The instability occurs in the parameter region encompassed
by the respective curves.

Similarly, we have for the period 2 solution

λ2(a, ν) = a4 +
(
2 + 2

3ν
)
a2 + 1, (24)

and for the period 4 solution

λ4(a, ν) = a4 + (2 − |ν|)a2 + 1. (25)

It is possible to derive similar expressions for the period 3 and period 6 solutions but the
expressions are more complicated and will be omitted here. Clearly, the p period solutions are
unstable for the parameter values where λp(a, ν) < 0, and we have illustrated these regions
in figure 2. Figure 2 shows the curves in the (a, ν)-plane where λp(a, ν) = 0 so that the
instability occurs in the regions that are encompassed by the respective curves. A symmetry
is apparent in this stability diagram, and it is easy to realize that this symmetry arises from the
fact that the transformation (ν, φn) → (−ν, (−1)nφn) establishes the following connection
between the short-period solutions: 1 ↔ 2, 3 ↔ 6 and 4 ↔ 4.

In conclusion, we have obtained staggered as well as short-period solutions of the saturable
discrete nonlinear Schrödinger equation. We also studied the linear stability and found
the solutions to be stable in certain parameter ranges. Finally, we found that the Peierls–
Nabarro barrier for the pulse solutions is zero. Our results are relevant to optical soliton pulse
propagation in waveguides and photorefractive media [1].
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